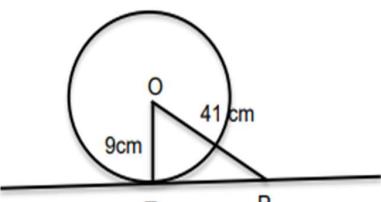


ST. JOSEPH PUBLIC SCHOOL

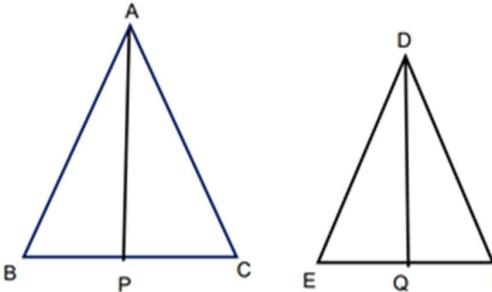
Kota Barrage Road, Kota-6 (Raj.)

C.B.S.E. New Delhi, MATHEMATICS-Standard

SOLUTIONS


Class: X

2025-26


MM: 80

Q.No.	Section A	Marks
1.	(C) 3 $LCM(a, b, c) = 2^2 \times 3^x \times 5 \times 7 = 3780$ $140 \times 3^x = 3780$ $3^x = 27 = 3^3$ $x = 3$	1
2.	(A) 2 As shortest distance from (2, 3) to y-axis is the x coordinate, i.e., 2.	1
3.	(B) $k \neq \frac{15}{4}$ $\frac{3}{2} \neq \frac{2k}{5}$, hence $k \neq \frac{15}{4}$	1
4.	(C) 6cm $AB+CD=AD+BC$ $AB+4=3+7$ $AB=6\text{cm}$	1
5.	(D) $\frac{1}{x}$ $\frac{1}{\sec\theta + \tan\theta} = \frac{(\sec\theta - \tan\theta)}{(\sec\theta + \tan\theta)(\sec\theta - \tan\theta)} = \frac{(\sec\theta - \tan\theta)}{1} = \sec\theta - \tan\theta$	1
6.	(D) $(x+2)(x+1) = x^2 + 2x + 3$, so, $x^2 + 3x + 2 = x^2 + 2x + 3$ gives $x - 1 = 0$ It's not a quadratic equation.	1
7.	D) $8\left[\frac{\pi}{6} - \frac{\sqrt{3}}{4}\right] \text{ cm}^2$ 	1
	Required Area = $8 \times \text{area of one segment}$ (with $r = 1\text{cm}$ and $\theta = 60^\circ$) $= 8 \times \left(\frac{60^\circ}{360^\circ} \times \pi \times 1^2 - \frac{\sqrt{3}}{4} \times 1^2\right)$ $= 8\left[\frac{\pi}{6} - \frac{\sqrt{3}}{4}\right] \text{ cm}^2$	

	<p>For Visually Impaired candidates:</p> <p>(D) $9\pi\text{cm}^2$ area of circle=$\pi(3^2)$ $=9\pi\text{ cm}^2$</p>	
8.	<p>(B) $\frac{31}{36}$</p> <p>Probability of getting sum 8 is $\frac{5}{36}$</p> <p>Probability of not getting sum 8 is $\frac{31}{36}$</p>	1
9.	<p>(B) 12°</p> <p>$\sin 5x = \frac{\sqrt{3}}{2}$</p> <p>So, $5x = 60^\circ$</p> <p>And hence $x = 12^\circ$</p>	1
10.	<p>(C) 4</p> <p>Since HCF=81, the numbers can be $81x$ and $81y$</p> <p>$81x + 81y = 1215$</p> <p>$x + y = 15$</p> <p>which gives four pairs as</p> <p>(1,14), (2,13), (4,11), (7,8)</p>	1
11.	<p>(D) 5cm</p> <p>$\pi r^2 = 51$</p> <p>$V = \frac{1}{3} \times \pi r^2 \times h$</p> <p>$85 = \frac{1}{3} \times 51 \times h$</p> <p>$h = \frac{85}{17} = 5\text{cm}$</p>	1
12.	<p>(D)</p> <p>As for equal roots to the corresponding equation,</p> <p>$b^2 = 4ac$</p> <p>Hence $ac = \frac{b^2}{4}$</p> <p>And hence $ac > 0 \Rightarrow c$ and a must have same signs</p>	1
13.	<p>(C) 231</p> <p>Area of sector</p> <p>$= \frac{1}{2} \times l \times r$</p> <p>$= \frac{1}{2} \times 22 \times 21 = 231\text{cm}^2$</p>	1

14.	<p>(C) 18cm</p> <p>$\Delta ABC \sim \Delta DEF$</p> $\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF} = \frac{\text{Perimeter of } \Delta ABC}{\text{Perimeter of } \Delta DEF}$ $\frac{6}{9} = \frac{\text{Perimeter of } \Delta ABC}{27}$ <p>Perimeter of $\Delta ABC = 18\text{cm}$</p>	1
15.	<p>(B) $\frac{9}{4}$</p> <p>Probability of getting vowels in the word Mathematics is $\frac{4}{11}$,</p> <p>So, $\frac{2}{2x+1} = \frac{4}{11}$</p> $\Rightarrow x = \frac{9}{4}$	1
16.	<p>(C) Parallelogram</p> <p>By visualising the figure by plotting points in co-ordinate plane it can be concluded it is a Parallelogram.</p>	1
17.	(A) median is increased by 2	1
18.	<p>(A) 40cm</p> <p>Since, tangent is perpendicular to the radius at the point of contact</p> <p>In ΔOPT, right angled at T</p> $OP^2 = OT^2 + TP^2$ $41^2 = 9^2 + TP^2$ $TP^2 = 1681 - 81 = 1600$ $TP = 40\text{cm}$	1
19.	(A) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A)	1
20.	<p>(A)</p> $\cos A + \cos^2 A = 1 \quad \text{---(i)}$ <p>gives $\cos A = \sin^2 A \quad \text{---(ii)}$ (using $\sin^2 A + \cos^2 A = 1$)</p> <p>Substituting value of $\cos A$ from (ii) in (i)</p> $\sin^2 A + \sin^4 A = 1$ <p>\therefore Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A)</p>	1

(Section – B)

21.	<p>(A) $n = 60, a = 8$ and $d = 2$ $t_{60} = 8 + 59(2) = 126$ $t_{51} = 108$ Hence $t_{51} + t_{52} + \dots + t_{60} = \frac{10}{2}(108 + 126) = 1170$</p> <p style="text-align: center;">OR</p> <p>(B) $230 = 6 + (n - 1)7$ gives $n = 33$ \therefore Middle Term = $t_{17} = 6 + (16)(7) = 118$</p>	$\frac{1}{2}$ $\frac{1}{2}$ 1
22.	$A + B = 90^\circ$ and $A - B = 30^\circ$ $A = 60^\circ$ and $B = 30^\circ$	1 1
23.	 $\triangle ABC \sim \triangle DEF$ $\Rightarrow \frac{AB}{DE} = \frac{BC}{EF}$ $\frac{AB}{DE} = \frac{2B}{2EQ}$ (AP and DQ are the medians) $\frac{AB}{DE} = \frac{BP}{EQ}$ In $\triangle ABP$ and $\triangle DEQ$ $\frac{AB}{DE} = \frac{BP}{EQ}$ $\angle B = \angle E$ ($\triangle ABC \sim \triangle DEF$) $\Rightarrow \triangle ABP \sim \triangle DEQ$ Hence, $\frac{AB}{DE} = \frac{AP}{DQ}$	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$
24.(A)	area of grass field that can be grazed by them $= \frac{\theta_1}{360^\circ} \times \pi r^2 + \frac{\theta_2}{360^\circ} \times \pi r^2 + \frac{\theta_3}{360^\circ} \times \pi r^2$ $= \frac{\pi r^2}{360^\circ} (\theta_1 + \theta_2 + \theta_3)$ $= \frac{\pi r^2}{360^\circ} \times 180^\circ$ $= \frac{22}{7} \times \frac{14 \times 14}{2}$ $= 308 \text{ m}^2$	1 1

OR

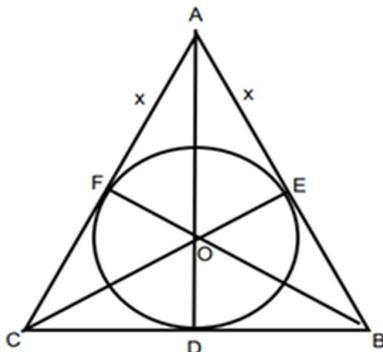
(B) Area of minor segment = Area of sector – area of triangle

$$= \frac{90^\circ}{360^\circ} \pi r^2 - \frac{1}{2} \times r^2$$

$$= \left(\frac{25}{4} \pi - \frac{25}{2}\right) \text{ cm}^2$$

1

Area of major segment = Area of circle – Area of minor segment


$$= \pi 5^2 - \left(\frac{25}{4} \pi - \frac{25}{2}\right)$$

$$= 25\pi - \frac{25}{4} \pi + \frac{25}{2}$$

$$= \left(\frac{75}{4} \pi + \frac{25}{2}\right) \text{ cm}^2$$

1

25.

Let r be the radius of the inscribed circle

$$\begin{aligned} BD &= BE = 10 \text{ cm} \\ CD &= CF = 8 \text{ cm} \\ \text{Let } AF &= AE = x \end{aligned}$$

1/2

$$\begin{aligned} \text{ar}(\triangle ABC) &= \text{ar}(\triangle AOC) + \text{ar}(\triangle BOC) + \text{ar}(\triangle AOB) \\ &= \frac{1}{2} \times r \times AC + \frac{1}{2} \times r \times BC + \frac{1}{2} \times r \times AB \end{aligned}$$

1/2

$$90 = \frac{1}{2} \times 4(x + 8 + 18 + x + 10)$$

$$x = 4.5 \text{ cm}$$

$$\begin{aligned} \therefore AB &= 4.5 + 10 = 14.5 \text{ cm} \\ AC &= 4.5 + 8 = 12.5 \text{ cm} \end{aligned}$$

1/2

1/2

For Visually Impaired candidates:

$$AC^2 = AB^2 + BC^2 = 24^2 + 7^2 = 625$$

1/2

$$AC = 25 \text{ cm}$$

1/2

$$\text{Area of } \triangle ABC = \frac{1}{2} \times 7 \times 24 = 84 \text{ cm}^2 \text{ ----(i)}$$

Let r = radius of circle

$$\text{Also, Area of } \triangle ABC = \frac{1}{2} (24r + 25r + 7r)$$

1/2

$$= \frac{1}{2} \times 56r \text{ ----(ii)}$$

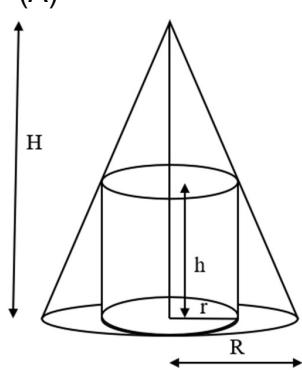
From (i) and (ii), we get

1/2

$$r = 3 \text{ cm}$$

1/2

(Section – C)


<p>26.</p>	<p>In $\triangle APO$ and $\triangle ACO$ $AP=AC$ (Tangents from External Point) $AO=AO$ (common) $OP=OC$ (radii) $\triangle APO \cong \triangle ACO$ $\angle POQ=180^\circ$ (PQ is the diameter) $\angle POA+\angle COA+\angle QOB+\angle COB=180^\circ$ $2\angle COA+2\angle COB=180^\circ$ $\angle AOB = 90^\circ$</p>	<p>1 1 1</p>
<p>For Visually Impaired candidates:</p>		
<p>PA=PB (Tangents from external point to a circle) $\angle PAB=\angle PBA=x$ (angles opposite to equal sides) In $\triangle PAB$, $\angle PAB+\angle PBA+\angle APB=180^\circ$ $x + x + \angle APB=180^\circ$ $\angle APB=180^\circ-2x$ ----- (i)</p>	<p>$\frac{1}{2}$</p>	
<p>Also, $\angle PAB+\angle OAB=90^\circ$ (radius is perpendicular to the tangent at the point of contact) $x + \angle OAB=90^\circ$ $x=90^\circ-\angle OAB$ ----- (ii)</p>	<p>1</p>	
<p>Substituting (ii) in (i), we get $\angle APB=180^\circ-2(90^\circ-\angle OAB)$ $\angle APB=2\angle OAB$</p>	<p>$\frac{1}{2}$</p>	
<p>27.</p> <p>HCF (36,60,84) =12</p> <p>Required number of rooms = $\frac{36}{12} + \frac{60}{12} + \frac{84}{12}$ $= 3 + 5 + 7$ $= 15$</p>	<p>1 $\frac{1}{2}$ 1 $\frac{1}{2}$</p>	
<p>28.</p> $2x^2 - (1+2\sqrt{2})x + \sqrt{2}$ $= 2x^2 - x - 2\sqrt{2}x + \sqrt{2}$ $= (2x - 1)(x - \sqrt{2})$ <p>Hence the zeroes are $\frac{1}{2}$ and $\sqrt{2}$.</p>	<p>1 1</p>	
<p>Now $\frac{-b}{a} = \frac{2\sqrt{2}+1}{2} = \sqrt{2} + \frac{1}{2}$ and $\frac{c}{a} = \frac{\sqrt{2}}{2} = \frac{1}{2} \times \sqrt{2}$</p>	<p>1</p>	

29.	<p>$\sin\theta + \cos\theta = \sqrt{3}$ gives $(\sin\theta + \cos\theta)^2 = 3$. Hence $1 + 2\sin\theta\cos\theta = 3$ So $2\sin\theta\cos\theta = 2$ $\Rightarrow \sin\theta\cos\theta = 1$</p> <p>$\therefore \tan\theta + \cot\theta = \frac{1}{\sin\theta\cos\theta} = 1$</p> <p style="text-align: center;">OR</p> $\begin{aligned}\frac{\cos A - \sin A + }{\cos A + \sin A - } &= \frac{(\cos A - \sin A +)(\cos A + \sin A + 1)}{(\cos A + \sin A - 1)(\cos A + \sin A +)} \\ &= \frac{\cos^2 A + 2\cos A + 1 - \sin^2 A}{2\sin A \cos A} \\ &= \frac{2\cos A(1 + \cos A)}{2\sin A \cos A} = \frac{1 + \cos A}{\sin A} = \operatorname{cosec} A + \cot A\end{aligned}$	1 1 1 1 1 1 1
30.	<p>$P(\text{Vidhi drives the car}) = \frac{3}{8}$ as favourable outcomes are HHT, THH, HHH $P(\text{Unnati drives the car}) = \frac{4}{8}$ as favourable outcomes are THT, THH, HTH, TTH As $\frac{4}{8} > \frac{3}{8}$ Unnati has greater probability to drive the car</p>	1 1 1
31.	<p>Let the income of Aryan and Babban be $3x$ and $4x$ respectively And let their expenditure be $5y$ and $7y$ respectively. Since each saves ₹ 15,000, we get</p> $\begin{aligned}3x - 5y &= 15000 \\ 4x - 7y &= 15000\end{aligned}$ <p>Hence $x = 30000$</p> <p>Their income thus become ₹90,000 and ₹1,20,000 respectively.</p> <p style="text-align: center;">OR</p>	1 1 1 1 1 2 for correct Graph

	<p>Hence, the solution is $x = 2, y = 2$</p> <p>Area= 2 sq. units</p> <p>For Visually Impaired candidates</p> <p>Let the present age of father be x and son be y</p> <p>So, $(x + 5) = 3(y + 5) \Rightarrow x - 3y = 10$</p> <p>$x - 5 = 7(y - 5) \Rightarrow x - 7y = -30$</p> <p>So, $x = 40, y = 10$.</p> <p>Hence the present ages of father and son are 40 years and 10 years Respectively</p>	$\frac{1}{2}$ $\frac{1}{2}$ 1 1 1
--	--	---

Section D

32.	<p>Let the original speed of train be x km/hr</p> <p>Distance = 63 km, time(t_1) = $\frac{63}{x}$ hrs</p> <p>Faster speed = $(x + 6)$ km/hr</p> <p>time (t_2) = $\frac{72}{x+6}$ hrs</p> <p>Now $t_1 + t_2 = 3$ hrs</p> <p>So $\frac{63}{x} + \frac{72}{x+6} = 3$</p> <p>$63(x + 6) + 72x = 3(x + 6)x$</p> <p>$135x + 378 = 3x^2 + 18x$</p> <p>$3x^2 - 117x - 378 = 0$</p> <p>$x^2 - 39x - 126 = 0$</p> <p>$x^2 - 42x + 3x - 126 = 0$ gives $(x + 3)(x - 42) = 0$</p> <p>As x can't be negative, so $x = 42$ km/hr</p> <p>The original speed of train = 42 km/hr</p>	1 1 1 1 1 1 1 1
33.	<p>Correct given, figure and construction</p> <p>Correct Proof</p> <p>since LM is parallel to QR</p> <p>Let PM = x</p> $\frac{PL}{PQ} = \frac{PM}{PR}$ $\frac{5.7}{15.2} = \frac{x}{x+5.5}$ $x = PM = 3.3\text{cm}$	2 2 $\frac{1}{2}$ $\frac{1}{2}$

34.	<p>(A)</p> <p>Slant height of the cone $L = \sqrt{R^2 + H^2} = \sqrt{12^2 + 6^2} = 3\sqrt{20} \text{ cm}$</p> <p>Curved Surface area of cone $= \pi RL = \pi \times 12 \times 3\sqrt{20} = (36\sqrt{20})\pi \text{ cm}^2$</p> <p>Area of base circle of cone (= area of outer circle - area of inner circle + top circular area of cylinder) $= \pi R^2 = \pi \times (12)^2 = 144\pi \text{ cm}^2$</p> <p>Curved Surface area of cylinder $= 2\pi rh = 2\pi \times 4 \times 3 = 24\pi \text{ cm}^2$</p> <p>Surface area of the remaining solid = Curved surface of cone + area of base circle of cone + curved surface area of cylinder $= (36\sqrt{20})\pi + 144\pi + 24\pi = (168 + 36\sqrt{20})\pi \text{ cm}^2$</p> <p>OR</p> <p>(B) Volume of cone $= \frac{1}{3}\pi r^2 h = \frac{1}{3}\pi \times 3 \times 3 \times 12 = 36\pi \text{ cm}^3$</p> <p>Volume of ice-cream in the cone $= \frac{5}{6} \times 36\pi \text{ cm}^3 = 30\pi \text{ cm}^3$</p> <p>Volume of ice-cream in the hemispherical part $= \frac{2}{3}\pi r^3 = \frac{2}{3}\pi \times 3 \times 3 \times 3 = 18\pi \text{ cm}^3$</p> <p>Total volume of the ice-cream $= (30\pi + 18\pi) = 48\pi = 150.86 \text{ cm}^3 \text{ (approx.)}$</p>	<p>1/2</p> <p>1</p> <p>1</p> <p>1</p> <p>1/2</p> <p>1</p> <p>1</p> <p>1</p> <p>1+1/2</p> <p>1+1/2</p>																																
35.	<p>(A) Mode of the frequency distribution = 55</p> <p>Modal class is 45-60. Lower limit is 45. Class Interval (h) = 15</p> <p>Now, Mode = $l + \left(\frac{f_1 - f_0}{2f_0 - f_1 - f_2} \right) \times h$</p> <p>$55 = 45 + \frac{15 - x}{30 - x} \times 5$</p> <p>So, $x = 5$</p> <table border="1" data-bbox="333 1424 976 1715"> <thead> <tr> <th>CI</th><th>f_i</th><th>x_i</th><th>$f_i x_i$</th></tr> </thead> <tbody> <tr> <td>0-15</td><td>10</td><td>7.5</td><td>75</td></tr> <tr> <td>15-30</td><td>7</td><td>22.5</td><td>157.5</td></tr> <tr> <td>30-45</td><td>5</td><td>37.5</td><td>187.5</td></tr> <tr> <td>45-60</td><td>15</td><td>52.5</td><td>787.5</td></tr> <tr> <td>60-75</td><td>10</td><td>67.5</td><td>675</td></tr> <tr> <td>75-90</td><td>12</td><td>82.5</td><td>990</td></tr> <tr> <td></td><td>59</td><td></td><td>2872.5</td></tr> </tbody> </table> <p>Mean = $\bar{x} = \frac{2872.5}{59} = 48.68$</p>	CI	f_i	x_i	$f_i x_i$	0-15	10	7.5	75	15-30	7	22.5	157.5	30-45	5	37.5	187.5	45-60	15	52.5	787.5	60-75	10	67.5	675	75-90	12	82.5	990		59		2872.5	<p>1/2</p> <p>1</p> <p>1</p> <p>1 1/2</p> <p>1</p>
CI	f_i	x_i	$f_i x_i$																															
0-15	10	7.5	75																															
15-30	7	22.5	157.5																															
30-45	5	37.5	187.5																															
45-60	15	52.5	787.5																															
60-75	10	67.5	675																															
75-90	12	82.5	990																															
	59		2872.5																															

OR

(B)

Height (in cm)	Number of girls	Class Interval	frequency
less than 140	04	135-140	4
less than 145	11	140-145	7
less than 150	29	145-150	18
less than 155	40	150-155	11
less than 160	46	155-160	6
less than 165	51	160-165	5

1

$$\begin{aligned}\text{Median} &= l + \left(\frac{\frac{N-Cf}{2}}{f} \right) \times h \\ &= 145 + \left(\frac{\frac{51-11}{2}}{18} \right) \times 5 \\ &= 149.03\end{aligned}$$

1

1

Median height = 149.03cm

1

$$3 \times \text{Median} = \text{Mode} + 2 \times \text{Mean}$$

1

$$3 \times 149.03 = 148.05 + 2 \times \text{Mean}$$

1

$$\text{Mean} = 149.52$$

Section E

36.

(i) Common difference of first progression= 3

1

Common difference of first progression= -3
Sum of common difference=0.

$$(ii) t_{34} = 187 + (34-1) (-3)$$

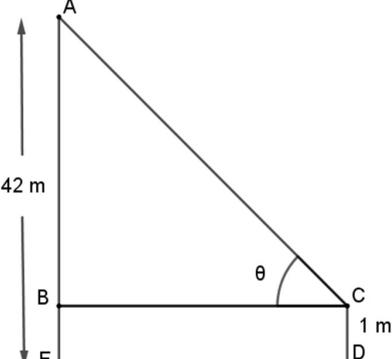
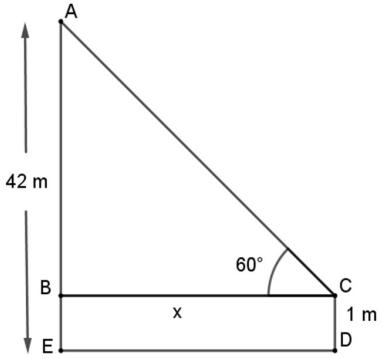
1

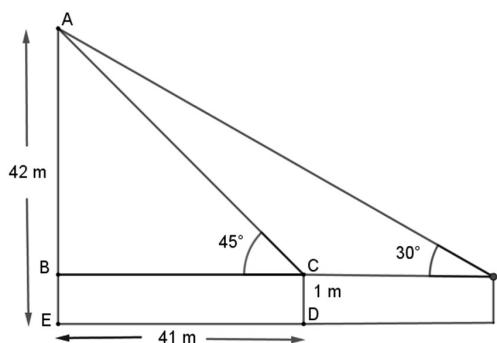
$$\text{So, } t_{34} = 88$$

$$(iii) (A) \text{Sum} = \frac{10}{2} [2(-5) + (10-1)(3)] \\ = 85$$

1

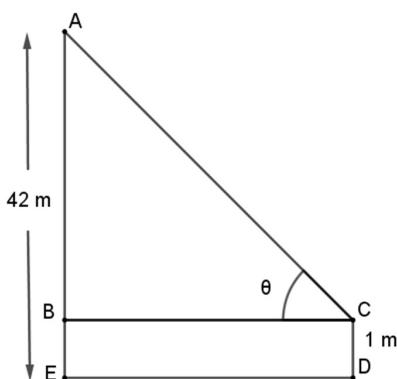
1



OR


$$(B) -5 + (n-1)3 = 187 + (n-1) (-3)$$

1

$$n = 33$$


1

37.	<p>(i) $PR = \sqrt{(8-2)^2 + (3-5)^2} = 2\sqrt{10}$</p> <p>(ii) Co-ordinates of Q (4,4). The mid-point of PR is (5,4) $\therefore Q$ is not the mid-point of PR</p> <p>(iii) (A) Let the point be $(x,0)$</p> <p>So, $\sqrt{(2-x)^2 + 25} = \sqrt{(4-x)^2 + 16}$</p> <p>Hence $x = \frac{3}{4}$. Therefore the point is $(\frac{3}{4}, 0)$.</p> <p>OR</p> <p>(B) The coordinates of S will be</p> $\left(\frac{2 \times 4 + 3 \times 2}{2+3}, \frac{2 \times 4 + 3 \times 5}{2+3} \right)$ $= \left(\frac{14}{5}, \frac{23}{5} \right)$	<p>1</p> <p>$\frac{1}{2}$</p> <p>$\frac{1}{2}$</p> <p>1</p> <p>1</p> <p>1</p> <p>1</p>
38.	<p>(i) Distance from India gate = 41m, Height of monument = 42m, Shreya's height = 1m So, $\tan \theta = \frac{41}{41} = 1$ Angle of elevation = $\theta = 45^\circ$.</p> <p>(ii) Angle of elevation = 60° Perpendicular = 41m Let the distance from the India Gate be x m Hence $\tan 60^\circ = \frac{41}{x}$ $\Rightarrow x = \frac{41}{\sqrt{3}}$ \therefore Shreya is standing at a distance of $\frac{41\sqrt{3}}{3}$ m</p>	<p>$\frac{1}{2}$</p> <p>$\frac{1}{2}$</p> <p>$\frac{1}{2}$</p> <p>$\frac{1}{2}$</p>

(iii) (A)
 Distance from the India Gate = 41 m
 Let the distance moved back be x m
 Then, $\tan 30^\circ = \frac{41}{41+x}$
 $x = (41\sqrt{3} - 41) \text{ m} = 41(\sqrt{3}-1) \text{ m}$
 \therefore The distance moved back = $41(\sqrt{3}-1) \text{ m}$

1
1

(B) Let the angle of elevation of be θ
 Now, $\tan \theta = \frac{41}{41} = \frac{41}{\sqrt{3}}$
 This gives $\theta = 60^\circ$

1
1

Note: This guess paper has been prepared with the aim of helping students score good marks; however, it does not guarantee that the Board examination will contain exactly the same questions.