

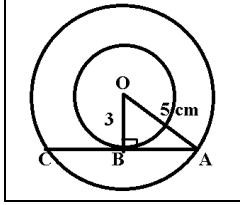
ST. JOSEPH PUBLIC SCHOOL

Kota Barrage Road, Kota-6 (Raj.)

C.B.S.E. New Delhi, **MATHEMATICS-Basic**

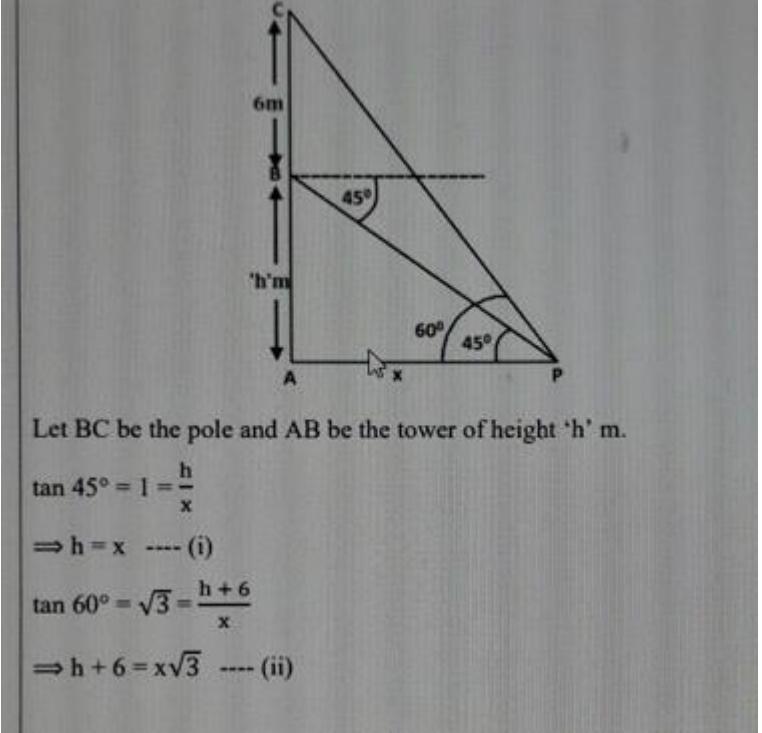
Class: X

Time Allowed: 3 Hours**SOLUTIONS****2025-26****Max.Marks:80****SECTION:A**


1	c)338	11	a)-2	
2	a) 6	12	b) 51	
3	b) $x^2 - 16x + 9 = 0$	13	d)15cm	
4	b)9	14	a) 30°	
5	c) $\frac{15}{4}$	15	b) 24	
6	a) $r = 3\text{cm}$,	16	c)30	
7	(b) ΔEAD	17	b)10-15	
8	(c) $l + 2r$	18	d) $\frac{1}{2}$	
9	a) $x = 2$	19	d) (A) is false but (R) is true	
10	b) $\frac{3}{4}$	20	(c) A is true but R is false.	
21.	Zeroes are -5,-2 $\alpha = -5, \beta = -2, a = 1, b = 7, c = 10$ $\alpha + \beta = \frac{-b}{a}$ or $-5 + (-2) = -\frac{7}{1}$ or $-7 = -7$ $\alpha\beta = \frac{c}{a}$ or, $-5 \cdot -2 = 10/1$ or $10 = 10$		1 1	1
22	(A)It can be observed that, $2 \times 5 \times 7 \times 11 + 11 \times 13 = 11 \times (70 + 13) = 11 \times 83$ which is the product of two factors other than 1. Therefore, it is a composite number. OR (B). The smallest number which is divisible by any two numbers is their LCM. So, Number which is divisible by both 306 and 657 = LCM (306, 657) Since, $306 = 2^1 \times 3^2 \times 17^1$ and $657 = 3^2 \times 73$ $\text{LCM} (306, 657) = 2^1 \times 3^2 \times 17^1 \times 73 = 22338$		1 1 1/2 1 1/2	1 1 1/2
23.	$\sin \theta + \sin^2 \theta = 1$ $\sin \theta = 1 - \sin^2 \theta$ $\sin \theta = \cos^2 \theta$ $\cos^2 \theta + \cos^4 \theta = \sin \theta + \sin^2 \theta = 1$		1 1	1

Or,	$\tan \theta = \frac{3}{5}$ $\frac{5 \sin \theta - 3 \cos \theta}{4 \sin \theta + 3 \cos \theta}$ $\frac{5 \tan \theta - 3}{4 \tan \theta + 3}$ $= 5 \times \frac{3}{5} - 3$ $\frac{4 \times \frac{3}{5} + 3}{= 0}$	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ 1
Q 24.	<p>As, P(3, a) lies on the line L, so $3 + a = 5 \Rightarrow a = 2$</p> <p>Now, the radius of the circle = CP = $\sqrt{3^2 + 2^2} = \sqrt{13}$ units</p>	1 1
Q25.	<p>For equal roots; $b^2 - 4ac = 0$</p> $k^2 - 24 = 0$ or, $k = \pm 2\sqrt{6}$	1 1
SECTION:C		
Q26.	For correct proof	3
Q27.	<p>(A)</p> <div style="border: 1px solid black; padding: 10px;"> <p>Solution: Modal Class is 40 – 60</p> $l = 40, f_1 = 30, f_0 = 25, f_2 = 24, h = 20$ $\text{Mode} = l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2} \right) \times h$ $= 40 + \left(\frac{30 - 25}{60 - 25 - 24} \right) \times 20$ $= 40 + 9.1 = 49.1$ </div> <p>OR (B)</p>	1 1 1 2 1

Class interval	f_i	x_i (Mid-value)	$d_i = \frac{x_i - 30}{h}$	$f_i d_i$
0-20	7	10	-1	-7
20-40	p	30	0	0
40-60	10	50	1	10
60-80	9	70	2	18
80-100	13	90	3	39
Total	$39 + p$			60


Assumed mean(A) = 30, Width of the interval (h) = 20

$$\text{Mean} = 30 + \frac{60}{39+p} \times 20 = 54 \Rightarrow 50 = 39 + p \Rightarrow p = 11$$

Q28.	<p>Numbers are 2x and 3x</p> $\frac{2x - 2}{3x - 8} = \frac{3}{2}$ $x = 4$ <p>Numbers are 8 and 12</p>	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$
Or,	<p>For infinitely many solutions</p> $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ $\frac{2}{k+1} = \frac{3}{2k-1} = \frac{-7}{-(4k+1)}$ $k = 5$	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$
Q29.	$\frac{5\left(\frac{1}{2}\right)^2 + 4\left(\frac{\sqrt{3}}{2}\right)^2 - (1)^2}{\left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2}$ $= \frac{5 \times \frac{1}{4} + 4 \times \frac{3}{4} - 1}{\frac{1}{4} + \frac{1}{4}}$ $= \frac{13}{2}$	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$
30.	<p>ΔOBA is right Δ at B (angle b/w radius and tangent is 90°)</p> <p>Using Pythagoras Theorem</p> $OA^2 = OB^2 + BA^2$ $5^2 = 3^2 + BA^2$ $BA = 4$ <p>$AC = 2AB$ (perpendicular from centre to the chord bisect the chord)</p> $AC = 8\text{cm}$	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

31.	<p>Sequence of the form: $a, a-20, a-40, \dots$</p> <p>First term = a, Common difference = $d = (a - 20) - a = -20$, $n = 7$, $S_n = 700$</p> <p>Applying formula, of S_7 of AP, we get, $a = 160$</p> <p>Therefore, value of first prize = ₹ 160</p> <p>Value of second prize = $160 - 20 = ₹ 140$</p> <p>Value of third prize = $140 - 20 = ₹ 120$</p> <p>Value of fourth prize = $120 - 20 = ₹ 100$</p> <p>Value of fifth prize = $100 - 20 = ₹ 80$</p> <p>Value of sixth prize = $80 - 20 = ₹ 60$</p> <p>Value of seventh prize = $60 - 20 = ₹ 40$</p>	1/2
		1

SECTION:D

Q33.	<p>Given ,To Prove ,Fig Correct proof</p> $\frac{PE}{EQ} = \frac{3.9}{3} = \frac{1 \cdot 3}{1}$ $\frac{PF}{FR} = \frac{3.6}{2 \cdot 4} = \frac{3}{2}$ <p>therefore $\frac{PE}{EQ} \neq \frac{PF}{FR}$</p> <p>EF not parallel to QR (By converse of BPT)</p>	1.5 2.5 1
Q34	<p>Radius of cylinder=radius of hemisphere=3.5cm $H=20-(3.5+3.5)=13\text{cm}$ Total volume of solid=vol.of cylinder+2x Volume of H.sphere</p> $\pi r^2 h + 2 \cdot \frac{2}{3} \cdot \pi r^3$ $= \frac{22}{7} \cdot \frac{7}{2} \cdot \frac{7}{2} \cdot 13 + 2 \cdot \frac{2}{3} \cdot \frac{22}{7} \cdot \frac{7}{2} \cdot \frac{7}{2} \cdot \frac{7}{2}$ $= 680.16 \text{ cubic cm.}$	1 1 1 1 1 1 1
35.	<p>Let BC be the pole and AB be the tower of height 'h' m.</p> $\tan 45^\circ = 1 = \frac{h}{x}$ $\Rightarrow h = x \quad \text{---- (i)}$ $\tan 60^\circ = \sqrt{3} = \frac{h + 6}{x}$ $\Rightarrow h + 6 = x\sqrt{3} \quad \text{---- (ii)}$ <p>Solve equation 1 and 2 we get $H = 8.19 \text{ m}$</p>	1 for fig 2 2

Here, AB represents the height of the lighthouse

In right $\triangle ABP$

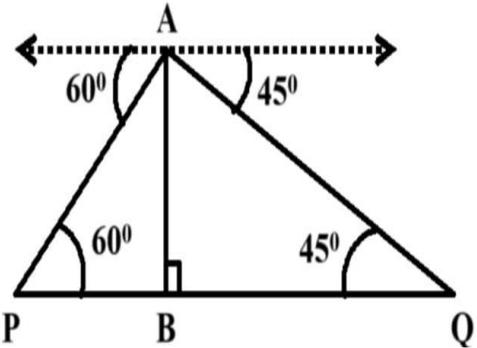
$$\frac{AB}{PB} = \tan 60^\circ = \sqrt{3}$$

$$\Rightarrow PB = \frac{AB}{\sqrt{3}} \quad \text{--- (1)}$$

In right $\triangle ABQ$

$$\frac{AB}{BQ} = \tan 45^\circ = 1$$

$$\Rightarrow BQ = AB \quad \text{--- (2)}$$


Adding (1) and (2), we have

$$PB + BQ = \frac{AB}{\sqrt{3}} + AB$$

$$\Rightarrow PQ = AB \left(\frac{1 + \sqrt{3}}{\sqrt{3}} \right)$$

$$\Rightarrow 100 \left(\frac{1 + \sqrt{3}}{\sqrt{3}} \right) = AB \left(\frac{1 + \sqrt{3}}{\sqrt{3}} \right)$$

$$\Rightarrow AB = 100 \text{ m}$$

SECTION:E

36.	(i)(-2,2) (ii) $2\sqrt{2}$ units (iii) $2\sqrt{5}$ units Or, (-10/7,-2/7)	1 1 2 2
37.	(i) 6 (ii) 707.14 cm^2 (iii) 58.93 cm^2 OR $55/7 \text{ cm}$	1 1 2
38.	(i) $P(\text{selected student doesn't prefer to walk}) = \frac{80}{100} = \frac{2}{5}$ (ii) $P(\text{selected student prefers to walk or use bicycle}) = \frac{170}{200} = \frac{17}{20}$ (iii) $P(\text{selected student uses bicycle}) = \frac{110}{200} = \frac{11}{20}$ OR, $P(\text{selected student is dropped by car}) = \frac{10}{200} = \frac{1}{20}$	1 1 2 2